Publications
Affiliations (Top 3)
Publications 4

Abstract The SARS (severe acute respiratory syndrome) outbreak was caused by a coronavirus (CoV) named the SARS-CoV. SARS pathology is propagated both by direct cytotoxic effects of the virus and aberrant activation of the innate immune response. Here, we identify several mechanisms by which a SARS-CoV open reading frame (ORF) activates intracellular stress pathways and targets the innate immune response. We show that ORF8b forms insoluble intracellular aggregates dependent on a valine at residue 77. Aggregated ORF8b induces endoplasmic reticulum (ER) stress, lysosomal damage, and subsequent activation of the master regulator of the autophagy and lysosome machinery, Transcription factor EB (TFEB). ORF8b causes cell death in epithelial cells, which is partially rescued by reducing its ability to aggregate. In macrophages, ORF8b robustly activates the NLRP3 inflammasome by providing a potent signal 2 required for activation. Mechanistically, ORF8b interacts directly with the Leucine Rich Repeat domain of NLRP3 and localizes with NLRP3 and ASC in cytosolic dot-like structures. ORF8b triggers cell death consistent with pyroptotic cell death in macrophages. While in those cells lacking NLRP3 accumulating ORF8b cytosolic aggregates cause ER stress, mitochondrial dysfunction, and caspase-independent cell death.

Autophagosomes delivers cytoplasmic constituents to lysosomes for degradation, whereas inflammasomes are molecular platforms activated by infection or stress that regulate the activity of caspase-1 and the maturation of interleukin 1β (IL-1β) and IL-18. Here we show that the induction of AIM2 or NLRP3 inflammasomes in macrophages triggered activation of the G protein RalB and autophagosome formation. The induction of autophagy did not depend on the adaptor ASC or capase-1 but was dependent on the presence of the inflammasome sensor. Blocking autophagy potentiated inflammasome activity, whereas stimulating autophagy limited it. Assembled inflammasomes underwent ubiquitination and recruited the autophagic adaptor p62, which assisted their delivery to autophagosomes. Our data indicate that autophagy accompanies inflammasome activation to temper inflammation by eliminating active inflammasomes.

The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

Ligand bound chemoattractant receptors activate the heterotrimeric G protein Gi to stimulate downstream signaling pathways to properly position lymphocytes in lymphoid organs. Here we show how variations the expression of a chemokine receptor and in two components in the signaling pathway, Gαi2 and RGS1, affects the output fidelity of the signaling pathway. Examination of B cells from mice with varying numbers of intact alleles of Ccr7, Rgs1, Gnai2, and Gnai3 provided the basis for these results. Loss of a single allele of either Gnai2 or Rgs1 affected CCL19 triggered chemotaxis, while loss of a single allele of Ccr7, which encodes the cognate CCL19 receptor, had little effect. Emphasizing the importance of Gnai2, B cells lacking Gnai3 expression responded to chemokines better than did wild type B cells. At an organismal level, variations in Rgs1 and Gnai2 expression affected marginal zone B cell development, splenic architecture, lymphoid follicle size, and germinal center morphology. Gnai2 expression was also needed for the proper alignment of MOMA-1+ macrophages and MAdCAM-1+ endothelial cells along marginal zone sinuses in the spleen. These data indicate that chemoattractant receptors, heterotrimeric G-proteins, and RGS protein expression levels have a complex inter-relationship that affects the responses to chemoattractant exposure.