Publications
Author Institutes (Top 5)
Publications 25

The immunochromatographic assay (ICA) is a simple antibody–antigen detection method, the results of which can be rapidly obtained at a low cost. We designed an ICA to detect anti-feline coronavirus (FCoV) antibodies. A colloidal gold-labeled recombinant FCoV nucleocapsid protein (rNP) is used as a conjugate. The Protein A and affinity-purified cat anti-FCoV IgG are blotted on the test line and the control line, respectively, of the nitrocellulose membrane. The specific detection of anti-FCoV antibodies was possible in all heparin-anticoagulated plasma, serum, whole blood, and ascitic fluid samples from anti-FCoV antibody positive cats, and nonspecific reaction was not noted in samples from anti-FCoV antibody negative cats.

Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.

Feline coronavirus (FCoV) is a pathogen causing a lethal infectious disease in cats, feline infectious peritonitis. It has two serotypes (type I FCoV and type II FCoV). According to our previous study, type I FCoV infection is inhibited by compounds inducing intracellular cholesterol accumulation, whereas type II FCoV infection is not inhibited. Intracellular cholesterol accumulation was reported to disrupt late endosome function. Based on these findings, types I and II FCoV are considered to enter the cytosol through late and early endosomes, respectively. We investigated whether the antiviral activities of a late endosome trafficking inhibitor and cholesterol-accumulating agents are different between the FCoV serotypes. The late endosome trafficking inhibitor did not inhibit type II FCoV infection, but it inhibited type I FCoV infection. Type I FCoV infection was inhibited by cholesterol-accumulating triazoles, but not by non-cholesterol-accumulating triazoles. These phenomena were observed in both feline cell lines and feline primary macrophages. This study provides additional information on the differences in intracellular reproductive cycle between type I and type II FCoV.

Norovirus (NoV) infection is the most common cause of acute gastroenteritis in humans of all ages worldwide. When cats are experimentally infected with feline norovirus (FNoV), they develop symptoms of acute gastroenteritis. Therefore, FNoV infection may serve as an animal model for the disease caused by human norovirus infection. In this study, we examined whether FNoV of cats infected with genogroup GVI are protected from reinfection with the same strain. The blood anti-FNoV IgG level was inversely correlated with the viral load in stool samples and the clinical score of FNoV-infected cats, but complete prevention of reinfection was not observed. These findings were similar to the results of a reinfection experiment with NoV in human volunteers.

Feline coronavirus (FCoV) has been classified into two biotypes: avirulent feline coronavirus (feline enteric coronavirus: FECV) and virulent feline coronavirus (feline infectious peritonitis virus: FIPV). In FIPV infection, antibody-dependent enhancement (ADE) has been reported and was shown to be associated with severe clinical disease. On the other hand, the potential role of ADE in FECV infection has not been examined. In this study, using laboratory strains of serotype II FIPV WSU 79-1146 (FIPV 79-1146) and serotype II FECV WSU 79-1683 (FECV 79-1683), we investigated the relationship between ADE and induction of inflammatory cytokines, which are pathogenesis-related factors, for each strain. As with ADE of FIPV 79-1146 infection, a monoclonal antibody against the spike protein of FCoV (mAb 6-4-2) enhanced FECV 79-1683 replication in U937 cells and primary feline monocytes. However, the ADE activity of FECV 79-1683 was lower than that of FIPV 79-1146. Moreover, mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) significantly increased with ADE of FIPV 79-1146 infection in primary feline monocytes, but FECV 79-1683 did not demonstrate an increase in these levels. In conclusion, infection of monocytes by FECV was enhanced by antibodies, but the efficiency of infection was lower than that of FIPV.

Feline bocavirus (FBoV) has been classified into three genotypes (FBoV1-FBoV3). FBoVs are mainly detected in feces. In the present study, we collected rectal swabs from cats in Japan and examined the samples for the presence of FBoV. The FBoV infection rate was 9.9 % in 101 cats. No significant association was observed between FBoV infection and clinical symptoms. Based on the full-length NS1 protein, the three strains of FBoVs detected in the present study shared high homologies with the genotype 2 FBoV POR1 strain. This is the first study to report FBoV in Japan.

Feline infectious peritonitis (FIP) is a fatal disease of domestic and wild felidae that is caused by feline coronavirus (FCoV). FCoV has been classified into types I and II. Since type I FCoV infection is dominant in the field, it is necessary to develop antiviral agents and vaccines against type I FCoV infection. However, few studies have been conducted on type I FCoV. Here, we compare the effects of cholesterol on types I and II FCoV infections. When cells were treated methyl-β-cyclodextrin (MβCD) and inoculated with type I FCoV, the infection rate decreased significantly, and the addition of exogenous cholesterol to MβCD-treated cells resulted in the recovery of the infectivity of type I FCoV. Furthermore, exogenous cholesterol increased the infectivity of type I FCoV. In contrast, the addition of MβCD and exogenous cholesterol had little effect on the efficiency of type II FCoV infection. These results strongly suggest that the dependence of infection by types I and II FCoV on cholesterol differs.

Canine astrovirus (CAstV) is the causative agent of gastroenteritis in dogs. We collected rectal swabs from dogs with or without diarrhea symptoms in Japan and examined the feces for the presence of CAstV by RT-PCR with primers based on a conserved region of the ORF1b gene. The ORF1b gene of CAstV was not detected in the 42 dogs without clinical illness but was present in three pups out of the 31 dogs with diarrhea symptoms. Based on the full-length capsid protein, the CAstV KU-D4-12 strain that we detected in this study shared high homology with the novel virulent CAstV VM-2011 strain.

Feline infectious peritonitis virus (FIP virus: FIPV), a feline coronavirus of the family Coronaviridae, causes a fatal disease called FIP in wild and domestic cat species. The genome of coronaviruses encodes a hydrophobic transmembrane protein, the envelope (E) protein. The E protein possesses ion channel activity. Viral proteins with ion channel activity are collectively termed "viroporins". Hexamethylene amiloride (HMA), a viroporin inhibitor, can inhibit the ion channel activity of the E protein and replication of several coronaviruses. However, it is not clear whether HMA and other viroporin inhibitors affect replication of FIPV. We examined the effect of HMA and other viroporin inhibitors (DIDS [4,4'-disothiocyano-2,2'-stilbenedisulphonic acid] and amantadine) on infection by FIPV serotypes I and II. HMA treatment drastically decreased the titers of FIPV serotype I strains Black and KU-2 in a dose-dependent manner, but it only slightly decreased the titer of FIPV serotype II strain 79-1146. In contrast, DIDS treatment decreased the titer of FIPV serotype II strain 79-1146 in dose-dependent manner, but it only slightly decreased the titers of FIPV serotype I strains Black and KU-2. We investigated whether there is a difference in ion channel activity of the E protein between viral serotypes using E. coli cells expressing the E protein of FIPV serotypes I and II. No difference was observed, suggesting that a viroporin other than the E protein influences the differences in the actions of HMA and DIDS on FIPV serotypes I and II.

Feline infectious peritonitis (FIP) is a feline coronavirus (FCoV)-induced fatal disease of domestic and wild cats. The infiltration of neutrophils into granulomatous lesions is unusual for a viral disease, but it is a typical finding of FIP. This study aimed to investigate the reason for the lesions containing neutrophils in cats with FIP. Neutrophils of cats with FIP were cultured, and changes in the cell survival rate were assessed. In addition, the presence or absence of neutrophil survival factors was investigated in specimens collected from cats with FIP. Furthermore, it was investigated whether macrophages, one of the target cells of FIPV infection, produce neutrophil survival factors (TNF-alpha, GM-CSF, and G-CSF). We showed that virus-infected macrophages overproduce neutrophil survival factors, and these factors act on neutrophils and up-regulate their survival. These observations suggest that sustained production of neutrophil survival factors by macrophages during FCoV infection is sufficient for neutrophil survival and contributes to development of granulomatous lesions.

It has been suggested that antibody overproduction plays a role in the pathogenesis of feline infectious peritonitis (FIP). However, only a few studies on the B-cell activation mechanism after FIP virus (FIPV) infection have been reported. The present study shows that: (1) the ratio of peripheral blood sIg+ CD21− B-cells was higher in cats with FIP than in SPF cats, (2) the albumin-to-globulin ratio has negative correlation with the ratio of peripheral blood sIg+ CD21− B-cell, (3) cells strongly expressing mRNA of the plasma cell master gene, B-lymphocyte-induced maturation protein 1 (Blimp-1), were increased in peripheral blood in cats with FIP, (4) mRNA expression of B-cell differentiation/survival factors, IL-6, CD40 ligand, and B-cell-activating factor belonging to the tumor necrosis factor family (BAFF), was enhanced in macrophages in cats with FIP, and (5) mRNAs of these B-cell differentiation/survival factors were overexpressed in antibody-dependent enhancement (ADE)-induced macrophages. These data suggest that virus-infected macrophages overproduce B-cell differentiation/survival factors, and these factors act on B-cells and promote B-cell differentiation into plasma cells in FIPV-infected cats.

Enterobacteriaceae, carrying the New Delhi metallo-β-lactamase-1 (NDM-1) gene (bla (NDM-1)), have emerged and posed a threat since 2006. In Japan, bla (NDM-1)-carrying Escherichia coli was first described in 2010. In this study, we characterized NDM-1-positive Klebsiella pneumoniae strain 419 in Japan, which was isolated from the urine of a 90-year-old Japanese patient who had never been to the Indian subcontinent. K. pneumoniae 419 belonged to ST42. It possessed a surface capsule (with untypeable capsular PCR types) and was resistant to serum killing. K. pneumoniae 419 cells were occasionally flagellated or piliated and autoaggregated. K. pneumoniae 419 was resistant to β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones, and was susceptible to imipenem (or biapenem), aztreonam, polymixin B, and colistin. It possessed at least eight plasmids; of those, a 74-kb plasmid (pKPJ1) of the replicon FIIA carried bla (NDM-1) and was conjugally transferred to E. coli strains, with a 71-kb transferable azithromycin-resistant (mphA (+)) plasmid of the replicon F (pKPJ2), as a large (145-kb) plasmid (pKPJF100) through a transposition event. In addition to bla (NDM-1), pKPJ1 carried arr-2, pKPJ2 carried mphA, and pKPJF100 carried both. They were negative for the 16S rRNA methylase gene, e.g., which is frequently associated with bla (NDM-1). The data demonstrate that K. pneumoniae 419 possessed virulence- and fitness-associated surface structures, was resistant to serum killing, and possessed a unique (or rare) genetic background in terms of ST type and bla (NDM-1)-carrying plasmid.

The New Delhi metallo-β-lactamase-1 (NDM-1) gene, bla (NDM-1), is an emerging plasmid-borne drug resistance gene, which encodes for exceptionally broad-spectrum β-lactamase, being able to hydrolyze a wide variety of β-lactams, including carbapenems, and was first reported in Klebsiella pneumoniae from a Swedish patient of Indian origin in 2009. It is widely distributed among Enterobacteriacae and has geographically exhibited extremely rapid and global spread. In this study, we characterized the bla (NDM-1)-positive ST38 Escherichia coli strain NDM-1 Dok01 (which was isolated from the blood of a 54-year-old Japanese inpatient, who had previously visited India), focusing on bacterial surface structures related to virulence. The E. coli culture contained colony variants, which developed a transparent smooth colony and a rough colony on blood agar plates. The smooth colony-forming cells (substrain M1) possessed a surface capsule and were resistant to serum killing, whereas rough colony-forming mutants (substrain B2) lacked a capsule (and a 5.3-kb plasmid) and were highly susceptible to serum killing. Reflecting the surface structural difference, substrain M1 was more flagellated and motile, whereas substrain B2 was less flagellated and apparently possessed straight pili 5 nm wide, which played a role in adherence to human intestinal cells and bacterial autoaggregation. Data suggest that the bla (NDM-1)-positive ST38 E. coli has emerged in Japan and that it is a capsulated bacterial pathogen with virulence potential in the blood stream.

Methicillin-resistant Staphylococcus aureus (MRSA) is able to persist not only in hospitals (with a high level of antimicrobial agent use) but also in the community (with a low level of antimicrobial agent use). The former is called hospital-acquired MRSA (HA-MRSA) and the latter community-acquired MRSA (CA-MRSA). It is believed MRSA clones are generated from S. aureus through insertion of the staphylococcal cassette chromosome mec (SCCmec), and outbreaks occur as they spread. Several worldwide and regional clones have been identified, and their epidemiological, clinical, and genetic characteristics have been described.

A bacterial insertion sequence (IS) is a mobile DNA sequence carrying only the transposase gene (tnp) that acts as a mutator to disrupt genes, alter gene expressions, and cause genomic rearrangements. “Canonical” ISs have historically been characterized by their terminal inverted repeats (IRs), which may form a stem-loop structure, and duplications of a short (non-IR) target sequence at both ends, called target site duplications (TSDs). The IS distributions and virulence potentials of Staphylococcus aureus genomes in familial infection cases are unclear. Here, we determined the complete circular genome sequences of familial strains from a Panton-Valentine leukocidin (PVL)-positive ST50/agr4 S. aureus (GN) infection of a 4-year old boy with skin abscesses. The genomes of the patient strain (GN1) and parent strain (GN3) were rich for “canonical” IS1272 with terminal IRs, both having 13 commonly-existing copies (ce-IS1272). Moreover, GN1 had a newly-inserted IS1272 (ni-IS1272) on the PVL-converting prophage, while GN3 had two copies of ni-IS1272 within the DNA helicase gene and near rot. The GN3 genome also had a small deletion. The targets of ni-IS1272 transposition were IR structures, in contrast with previous “canonical” ISs. There were no TSDs. Based on a database search, the targets for ce-IS1272 were IRs or “non-IRs”. IS1272 included a larger structure with tandem duplications of the left (IRL) side sequence; tnp included minor cases of a long fusion form and truncated form. One ce-IS1272 was associated with the segments responsible for immune evasion and drug resistance. Regarding virulence, GN1 expressed cytolytic peptides (phenol-soluble modulin α and δ-hemolysin) and PVL more strongly than some other familial strains. These results suggest that IS1272 transposes through an IR-replacing mechanism, with an irreversible process unlike that of “canonical” transpositions, resulting in genomic variations, and that, among the familial strains, the patient strain has strong virulence potential based on community-associated virulence factors.

Abstract Feline infectious peritonitis (FIP), caused by a mutated feline coronavirus, is one of the most serious and fatal viral diseases in cats. The disease remains incurable, and there is no effective vaccine available. In light of the pathogenic mechanism of feline coronavirus that relies on endosomal acidification for cytoplasmic entry, a novel vacuolar ATPase blocker, diphyllin, and its nanoformulation are herein investigated for their antiviral activity against the type II feline infectious peritonitis virus (FIPV). Experimental results show that diphyllin dose-dependently inhibits endosomal acidification in fcwf-4 cells, alters the cellular susceptibility to FIPV, and inhibits the downstream virus replication. In addition, diphyllin delivered by polymeric nanoparticles consisting of poly(ethylene glycol)-block-poly(lactide-co-glycolide) (PEG-PLGA) further demonstrates an improved safety profile and enhanced inhibitory activity against FIPV. In an in vitro model of antibody-dependent enhancement of FIPV infection, diphyllin nanoparticles showed a prominent antiviral effect against the feline coronavirus. In addition, the diphyllin nanoparticles were well tolerated in mice following high-dose intravenous administration. This study highlights the therapeutic potential of diphyllin and its nanoformulation for the treatment of FIP.

Antibodies to Encephalitozoon cuniculi (E. cuniculi) were examined by enzyme-linked immunosorbent assay using E.cuniculi PTP2 recombinant protein from serum samples that had been collected from a total of 295 cats in Japan. Of these samples, 6.1% (18/295) hadantibodies against E. cuniculi, which included 6.3% (6/96) of the male cats and 6.0% (12/199) of the female cats. The incidence was slightlyhigher in feral cats (8.3%, 11/132) compared to domesticated cats (4.3%, 7/163). This suggests the possibility that the cats of our country have become areservoir of E. cuniculi. This study is the first to demonstrate the prevalence of E. cuniculi infection in cats in Japan.

Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virusinfection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in theaggravation of FIP pathology. We previously described the preparation of neutralizingmouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinicalcondition of cats with FIP using in vitro systems. However,administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouseantibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of felineantibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity.Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and thechanges in the ability to induce feline anti-mouse antibody response were investigated. Inthe serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production wasinduced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. Incontrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody responsewas decreased compared to that of mouse mAb 2–4-treated cats.

MIG-17, a secreted protease of the ADAMTS family, acts in the directed migration of gonadal distal tip cells (DTCs) through regulation of the gonadal basement membrane in Caenorhabditis elegans. Here, we show that MIG-17 is also required for the control of pharynx elongation during animal growth. We found that the pharynx was elongated in mig-17 mutants compared with wild type. MIG-17 localized to the pharyngeal basement membrane as well as to the gonadal basement membrane. The number of nuclei in the pharynx, and the pumping rate of the pharynx, were not affected in mig-17 mutants, suggesting that cells constituting the pharynx are elongated, although the pharynx functions normally in these mutants. In contrast to the control of DTC migration, MIG-18, a secreted cofactor of MIG-17, was not essential for pharynx length regulation. In addition, the downstream pathways of MIG-17 involving LET-2/type IV collagen, FBL-1/fibulin-1, and NID-1/nidogen, partly diverged from those in gonad development. These results indicate that basement membrane remodeling is important for organ length regulation, and suggest that MIG-17/ADAMTS functions in similar but distinct molecular machineries in pharyngeal and gonadal basement membranes.

We collected rectal swabs from dogs in Japan during 2011 to 2014, and canine coronavirus (CCoV) nucleocapsidgene was detected by RT-PCR. The relationship between CCoV infection and the manifestation of diarrheasymptoms was investigated, and a correlation was noted (df=1, χ2=8.90,P<0.005). The types of CCoV detected in samples from CCoV-infected dogs were CCoV-I in88.9% and CCoV-II in 7.4%, respectively. We retrospectively investigated the seroprevalence of CCoV-I in dogsin Japan during 1998 to 2006. The sera were tested with a neutralizing antibody test. In the absence of CCoV-Ilaboratory strain, we used feline coronavirus (FCoV)-I that shares high sequence homology in the S proteinwith CCoV-I. 77.7% of the sera were positive for neutralizing anti-FCoV-I antibodies.


Affiliations 6
Journals 8
CC BY
Coronaviruses
The Journal of Veterinary Medical Science
Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy